Abstract

Physical vapor deposition (PVD) technologies have been widely used to produce metal nitride films on planar substrate for electrode of ultrafast charging supercapacitors. However, planar electrode structure greatly limits the energy density of device. This work, for the first time, employs multi-arc ion plating (MAIP) to efficiently prepare titanium nitride (TiN) nano arrays on 3D current collector (i.e., nickel foam). The array morphology, composition, crystal structure, electrical and electrochemical properties of TiN as a function of working pressure are investigated. The optimized electrode exhibits a large specific capacitance of 90.18 F g−1 and a good stability with capacity loss of 11.9% after 10,000 charge-discharge cycles at 1 A g−1. The assembled symmetrical supercapacitor can achieve a high energy density of 4.72 Wh kg−1 with a power density of 800 W kg−1 under current density of 1 A g−1. The general findings open a new and promising strategy in facile and efficient fabrication of electrode materials towards ultrafast charging supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.