Abstract

AbstractTin‐lead perovskite solar cells (PSCs) show inferior power conversion efficiency (PCE) than their Pb counterparts mainly because of the higher open‐circuit voltage (Voc) loss. Here, it is revealed that the p‐type surface of perovskite transforms to n‐type, based on post‐treatment by a Lewis base, ethylenediamine. This approach forms a graded band structure owing to the rise of the Fermi‐energy level at the surface of the perovskite layer, and increases the built‐in potential from 0.56 to 0.76 V, which increases the Voc by more than 100 mV. It is demonstrated that EDA can lower the defect density (Sn4+ amount) by screening perovskite against oxygen, and by bonding with undercoordinated Sn on the surface. This study further explores the role of Br anion inclusion in the perovskite lattice from the viewpoint of reducing the lattice strain and Urbach energy. Finally, a high Voc of 0.86 V is obtained, corresponding to a voltage deficit of 0.39 V, using a perovskite absorber with a bandgap of 1.25 eV and the highest PCE (21.74%) reported so far for Sn‐Pb PSCs is achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.