Abstract

Highly performing mixed Sn/Pb-metal halide perovskite solar cells (PSCs) are among the most promising options to reduce Pb content in perovskite devices and enable, owing to their reduced bandgap, the fabrication of all-perovskite tandem solar cells. Whereas pure-Pb perovskite devices exhibit efficiency up to 25.5%, alongside a high open-circuit voltage (≈1.2 V), Sn-Pb PSCs still show lower performances (22.2%) due to higher open-circuit voltage losses. Here, we introduced 2,3,4,5,6-pentafluorophenethylammonium cations in a perovskite active layer of composition (FASnI3)0.5(MAPbI3)0.5 to obtain highly oriented films with improved thermal stability. The treated films exhibit merged grains with no evidence of 2D structures, which could help to reduce the trap state density at the surface and grain boundaries. Solar cells fabricated with the fluorinated cation added to the active layer displayed reduced trap-assisted recombination losses and lower background carrier density, which leads to enhanced open-circuit voltages with respect to the reference samples and the active layers incorporating unfluorinated phenethylammonium cations. The best device reached an efficiency of 19.13%, with an open-circuit voltage of 0.84 V, which is substantially improved with respect to the reference sample showing 17.47% efficiency and 0.77 V open-circuit voltage. More importantly, the fluorinated cations' addition is instrumental to improve the device's thermal stability; 90.3% of the solar cell initial efficiency is maintained after 90 min of thermal stress at 85 °C in a nitrogen atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.