Abstract

Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets (WRPs) and in rabbit plasma rich in platelets (rPRPs). Herein, the synthesis and biological investigation of a series of organometallic tin(II) and tin(IV) complexes, featuring the oxygen tripodal Kläui ligands [(η5-C5R5)Co{P(OEt)2O}3]-, {R = H, (LOEt-); Me (L*OEt-)}, are reported. Reaction of NaLOEt (1a) and NaL*OEt (1b) with SnCl2, yielded the rare four-coordinate LOEtSnCl (2a) and L*OEtSnCl (2b) complexes. Accordingly, LOEtSnPh3 (3a) and L*OEtSnPh3 (3b) were prepared, starting from Ph3SnCl. Characterization includes spectroscopy and X-ray diffraction studies for 2a, 2b and 3b. The antiplatelet activity of the lead complexes 2b and 3a (IC50 = 0.5 μΜ) is superior compared to that of 1a and 1b, while both complexes display a pronounced inhibitory activity against thrombin (IC50 = 1.8 μM and 0.6 μM). The in vitro cytotoxic activities of 3a and 2b on human Jurkat T lymphoblastic tumor cell line is higher than that of cisplatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.