Abstract

A nanocomposite material made of layered tin disulfide (SnS2) nanoplates vertically grown on reduced graphene oxide nanoribbons (rGONRs) has been successfully developed as an anode in lithium ion batteries by a facile method. At a rate of 0.4 A/g, the material exhibits a high discharge capacity of 823 mAh/g even after 800 cycles. It shows excellent rate stability when the current density varies from 0.1 to 3.0 A/g with a Coulombic efficiency larger than 99%. In order to demonstrate the anode material for practical applications, SnS2-rGONR/LiCoO2 full cells were constructed. To the best of our knowledge, this is the first time that a full cell has been successfully developed using metal chalcogenides as an anode. The full cell delivers a high capacity of 642 mAh/g at 0.2 A/g, superior rate, and cycling stability after long-term cycling. Moreover, the full cell has a high output working voltage of 3.4 V. These excellent lithium storage performances in half and full cells can be mainly attributed to the synergistic effect between the highly conductive network of rGONRs and the high lithium-ion storage capability of layered SnS2 nanoplates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.