Abstract

Huashan, Guposhan and Qitianling are three similar and representative metaluminous A-type tin granites in the western Nanling Range, China. They all have a high oxidization state with magnetite as the dominant Fe–Ti oxide. This study presents an understanding of systematic mineralogy of Sn-bearing minerals (biotite, titanite, magnetite and cassiterite) in the three granites. Biotite has an annite composition and both electron-microprobe and LA-ICP-MS analyses indicate trace amounts of tin in biotite (approximately 100–20ppm). Chloritization of biotite is accompanied by formation of Sn-rich rutile and cassiterite. Titanite has a long history of crystallization from the early-magmatic stage through the late-magmatic stage to the hydrothermal stage. Owing to its solid-solution relationship with malayaite (CaSnSiO5), titanite always contains tin to various extents. Early-magmatic titanite contains about 0.5wt.% SnO2, while the late-magmatic titanite is markedly enriched in tin (on average 14.8 and 3.4 SnO2 in titanite from the Qitianling and Huashan granites, respectively). Magnetite grains typically display a trellis structure with ilmenite lamellae, where microinclusions of cassiterite (<1μm in size) are present. This is likely consistent with features of the “oxy-exsolution” process of Sn-bearing titanomagnetite precursor. Cassiterite may be observed as late-magmatic phase, but most commonly appears as an alteration product of other primary minerals. All tin-bearing minerals in the three granites record a complete process of tin mineralization in granite. The features of tin in primary biotite, titanite and magnetite reflect an initial enrichment during the early stage of magmatic crystallization of the Huashan, Guposhan and Qitianling granites. Association of interstitial Sn-titanite and cassiterite suggests further tin enrichment related to fractional crystallization of granitic magmas. Fluids and alteration of primary minerals play an important role in the leaching, concentration and transportation of Sn during hydrothermal processes, which favors vein-type Sn mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call