Abstract

This work examines the Ni–Sn/Ce–La–O catalyst systems for low-temperature stream reforming of ethanol. Catalysts of 5 and 20 wt% metal loading, and different Ce:La ratios are prepared by ultra-sonication assisted solution combustion synthesis method. Catalysts at total metal loading 5 wt% with 33 and 67 at. % La and optimum Sn (Ni:Sn = 14:1) demonstrate better efficiency compared to the Ni/CeO2 catalysts. At 20 wt% metal loading and Ni:Sn = 1:1 atomic ratio, catalytic activity degrades. The best activity and stability are revealed for the N14S1(5)/CL21 catalyst with 5 wt.% total metal loading, Ni:Sn = 14:1, and Ce:La = 2:1 mol ratio. Physico-chemical characterizations (XRD, H2 -TPR, NH3-TPD, Raman, FESEM, TEM, XPS, N2 adsorption-desorption, DTA/TGA, etc.) are performed to understand the role of the metal loading, Sn, and La in the catalytic activity and coke deposition behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.