Abstract
The paper concerns an analysis of equilibrium problems for 2D elastic bodies with a thin Timoshenko inclusion crossing an external boundary at zero angle. The inclusion is assumed to be delaminated, thus forming a crack between the inclusion and the body. We consider elastic inclusions as well as rigid inclusions. To prevent a mutual penetration between the crack faces, inequality type boundary conditions are imposed at the crack faces. Theorems of existence and uniqueness are established. Passages to limits are investigated as a rigidity parameter of the elastic inclusion going to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.