Abstract

This paper covers our observations of the failure behavior of a clocked digital circuit with sinusoidal interference acting on its supply. Conventionally, it has been thought that interference causes mainly logic-level errors in digital circuits, with the average value of the interference determining the circuit delay. As the interference cycle time is much shorter than both the data path delay and clock cycle time, the average value of the interference is almost zero. However, it still causes a timing violation, rather than a logic-level error, in the circuit. This observation was at odds with conventional thinking. This behavior was confirmed with both transistor-level simulations and board-based measurements. The findings of the present study are important for determining the frequency response of the maximum tolerable interference amplitude of a digital circuit in the design phase

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.