Abstract

Mammals have highly diverse limbs that have contributed to their occupation of almost every niche. Researchers have long been investigating the development of these diverse limbs, with the goals of identifying developmental processes and potential biases that shape mammalian limb diversity. To date, researchers have used techniques ranging from the genomic to the anatomic to investigate the developmental processes shaping the limb morphology of mammals from five orders (Marsupialia, Chiroptera, Rodentia, Cetartiodactyla, and Perissodactyla). Results of these studies suggest that the differential expression of genes controlling diverse cellular processes underlies mammalian limb diversity. Results also suggest that the earliest development of the limb tends to be conserved among mammalian species, while later limb development tends to be more variable. This research has established the mammalian limb as a model system for evolutionary developmental biology, and set the stage for more in-depth, cross-disciplinary research into the genetic controls, tissue-level cellular behaviors, and selective pressures that have driven the developmental evolution of mammalian limbs. Ideally, these studies will be performed in a diverse suite of mammalian species within a comparative, phylogenetic framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.