Abstract

A non-data-aided near maximum likelihood (NDA-NML) symbol timing estimator is presented, which is applied to a cooperative communication system with a source, relay and destination. A Cramer rao bound (CRB) for the estimator for asymptotically low signal-to-noise (SNR) ratio case is derived. The timing complexity of the NDA-NML estimator is derived and compared with the correlation based data-aided maximum likelihood (DA-ML) estimator. It is demonstrated that the complexity of the NDA-NML estimator is much less than that of correlation based DA-ML estimator. The bit-error-rate (BER) performance of this system operating in a detect-and-forward (DAF) mode is studied where the channel state information (CSI) is available at the receiver and the symbol timings are estimated independently for each channel. SNR combining (SNRC) and equal ratio combining (ERC) methods are considered. It is found that timing estimation error has a significant effect on BER performance. It is also found that for large timing error the benefit of cooperative diversity could vanish. It is demonstrated that significant gains can be made with both combining methods with cooperation and timing estimation, where the gains are the same for both estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.