Abstract

Depth-of-interaction (DOI) detectors are considered to be advantageous for time-of-flight positron emission tomography (TOF-PET) because they can correct timing errors arising in the scintillation crystals due to a propagation speed difference between annihilation radiation and scintillation photons. We experimentally measured this timing error, using our four-layer DOI encoding method. The upper layers exhibited the larger timing delays due to the longer path lengths after conversion from annihilation radiation into scintillation photons that traveled by zigzag paths at a speed decreased by a factor of the refractive index ( n). The maximum timing delay between the uppermost and the lowermost layers was evaluated as 164 ps when n=1.47. A TOF error correction was demonstrated to improve the timing resolution of the four-layer DOI detector by 10.3%, which would increase the effective sensitivity of the scanner by about 12% comparison with a non-DOI TOF-PET scanner. This is the first step towards combining these two important fields in PET instrumentation, namely DOI and TOF, for the purpose of achieving a higher sensitivity as well as a more uniform spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.