Abstract
The implementation of nanocrystal‐based composite scintillators as a new generation of ultrafast particle detectors is explored using ZnO:Ga nanopowder. Samples are characterized with a spectral‐time resolved photon counting system and pulsed X‐rays, followed by coincidence time resolution (CTR) measurements under 511 keV gamma excitation. Results are comparable to CTR values obtained using bulk inorganic scintillators. Bringing the ZnO:Ga nanocrystal's timing performance to radiation detectors could pave the research path towards sub‐20 ps time resolution as shown in this contribution. However, an efficiency boost when placing nanopowders in a transparent host constitutes the main challenge in order to benefit from sub‐nanosecond recombination times. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.