Abstract

Collision can be subdivided into “soft” and “hard” types, with the “soft” collision occurring after double-sided oceanic subduction and the “hard” collision after single-sided oceanic subduction. Although two types of collision involve different geodynamics and generate distinct petrological assemblages, whether they can preserve distinct records of detrital zircons remains unclear. This study confirms “soft” collision between the north Western Kunlun terrane (NKT) and the south Western Kunlun terrane (SKT) after the closure of the Proto-Tethys Ocean. We further compare detrital zircon Hf isotope compositions of the “soft” collision with those of the “hard” collision related to the amalgamation of Rodinia in southern Tarim. Our results show that the NKT is characterized by dominant ca. 800 Ma zircons, whereas the SKT is featured by ca. 244 Ma, ca. 440 Ma, and ca. 620 Ma zircons. As such, sample 17WP53 deposited at 431 Ma in the NKT displays a dominant peak at ca. 500 Ma, indicating minor material exchange between the NKT and the SKT at ca. 431 Ma. Given the 420–405 Ma North Kudi granites displaying geochemical features of within-plate granites formed at a post-orogenic stage, we infer that the final closure of the Proto-Tethys Ocean occurred at 431–420 Ma along Western Kunlun. Moreover, zircon εHf(t) data indicate that the “soft” collision between the NKT and the SKT during the amalgamation of Gondwana produced ca. 40% of juvenile crustal materials, whereas the “hard” collision related to the formation of Rodinia generated ca. 12% of juvenile crustal materials. More juvenile materials generated in the “soft” collision may be attributed to complete detachment and sinking of a oceanic slab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.