Abstract

Abstract: The objective of this work was to evaluate the economic viability and competitiveness of upland rice (Oryza sativa), compared with flooded rice, in a system with different nitrogen fertilization timing and cover crops in Southeastern Brazil. The treatments consisted of upland rice grown under Urochloa brizantha or Urochloa ruziziensis straw, with the following fertilization: T, 30 kg ha-1 N at rice sowing + no extra N supply (0 kg ha-1); C, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N at rice tillering; A2, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N one day before rice sowing; and A1, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N in the living cover crops. Total operating cost, gross revenue, operating profit, profitability index, and equilibrium price were determined. Upland rice results in a monetary gain for the farmer similar to that of flooded rice when nitrogen is added, regardless of fertilization timing. Under rainfall deficit conditions, upland rice sown on U. brizantha straw shows higher profitability rates than when sown on U. ruziziensis. When there is a possibility of rainfall deficit, U. brizantha, as a cover plant, results in a greater economic security for upland rice producers.

Highlights

  • One of the greatest challenges faced worldwide by agricultural research is developing sustainable agriculture systems that produce more while requiring fewer inputs and less water (Mohanty et al, 2019)

  • The treatments consisted of upland rice grown under Urochloa brizantha or Urochloa ruziziensis straw, with the following fertilization: T, 30 kg ha-1 N at rice sowing + no extra N supply (0 kg ha-1); C, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N at rice tillering; A2, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N one day before rice sowing; and A1, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N in the living cover crops

  • Upland rice sown on U. brizantha straw shows higher profitability rates than when sown on U. ruziziensis

Read more

Summary

Introduction

One of the greatest challenges faced worldwide by agricultural research is developing sustainable agriculture systems that produce more while requiring fewer inputs and less water (Mohanty et al, 2019). The increase in the average global temperature due to climate change has led to the increase in the frequency of prolonged drought periods, with changes in the dynamics of precipitation, which may affect water availability in the future (Boonwichai et al, 2018). This scenario calls attention to the sustainability of the production of rice (Oryza sativa L.), the most consumed cereal in the world, which requires large amounts of water (Mohanty et al, 2019). Upland rice production is one of them due to its capacity of producing grains while conserving water (Portugal et al, 2015)

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.