Abstract

Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test). In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

Highlights

  • Down syndrome (DS) is a common genetic condition associated with a number of cognitive and movement disturbances

  • The kinematic traces show that the adolescent compared with the adult exhibited larger peaks of acceleration during the first flexion and smaller value of KF1-F2

  • The EMG onset of the Rectus femoris (RF) burst during the first flexion occurred at short time from the movement initiation for the adolescent (71 ms) and much later for the adult (270 ms)

Read more

Summary

Introduction

Down syndrome (DS) is a common genetic condition associated with a number of cognitive and movement disturbances. In addition to hypotonia distributed to all major muscle groups, the movement difficulties depend on biomechanical defects such as the ligamentous laxity [3], flat feet [4] and obesity [5]. Because of these deficits, people with DS constantly challenge the joint instability increasing the risk to impair motion and posture in everyday life. Despite their inherent neuronal and musculoskeletal disorders, persons with DS express large capacity of adaptation, implementing compensatory strategies to overcome their deficits [6,7,8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call