Abstract

Reprogramming of DNA methylation is an essential part of gametogenesis, and a role of two members of the DNA methyltransferase (Dnmt) family, Dnmt3a and Dnmt3L, has been recognized. In an attempt to elucidate the role of Dnmt3a, we analyzed the progression of spermatogenesis in Dnmt3a (-/-) homozygotes during the first 3 weeks of post-natal development. The emerging picture was markedly different from that recently reported for the Dnmt3L protein. In the Dnmt3a (-/-) testis, at the expected time of entry into meiosis (11-13 dpp), the number of spermatocytes was greatly reduced. They progressively accumulated during the following days, but at a slower rate than in the wild type. Once started, however, the pachytene stage was apparently completed with normal chromosome pairing and formation of the sex vesicle, and spermatogenesis further progressed with the appearance and the expression of round spermatid specific markers. Interestingly and unlike Dnmt3L (-/-) spermatocytes, Dnmt3a (-/-) germ cells showed only a minor reduction in the methylation of interspersed repetitive elements and retroposons. The Dnmt3a might thus generate a mark important for the initiation of male meiosis that is distinct from that created by Dnmt3L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.