Abstract

Despite detailed knowledge of the sensory-motor interactions during elevator muscle timing for the generation of a 'functional' flight motor pattern in flying locusts, there is little information about how a possible shift in the onset of elevator activity is correlated with changes in flight variables under closed-loop conditions (i.e. during free flight). Free-flight variables were investigated with respect to ascent angle during climbing flight in locusts Schistocerca gregaria. The motor pattern during free flight was examined by telemetric electromyography of particular antagonistic flight muscles in both ipsilateral hemisegments of the pterothorax while flight variables were recorded simultaneously on video. In the majority of the animals tested, the onset of elevator muscle activity within the wingbeat cycle is delayed when animals increase their ascent angle during climbing flight. In accordance with the motor pattern, the downstroke phase and the stroke amplitude of the wings increased with increasing the ascent angle. This suggests that the relative elevator timing during the wingbeat cycle may be related to the generation of the additional aerodynamic lift required for ascending flight and may, therefore, play a role in the regulation of ascent angle during free flight in the locust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call