Abstract

The nuclear receptor steroidogenic factor 1 (Sf1, Nr5a1, Ad4bp) is crucial for formation, development and function of steroidogenic tissues. A fetal adrenal enhancer (FAdE) in the Sf1 gene was previously identified to direct Sf1 expression exclusively in the fetal adrenal cortex and is bound by both Sf1 and Dax1. Here, we have examined the function of Sf1 SUMOylation and its interaction with Dax1 on FAdE function. A diffused prolonged pattern of FAdE expression and delayed regression of the postnatal fetal cortex (X-zone) were detected in both the SUMOylation-deficient-Sf12KR/2KR and Dax1 knockout mouse lines, with FAdE expression/activity retained in the postnatal 20αHSD-positive postnatal X-zone cells. In vitro studies indicated that Sf1 SUMOylation, although not directly influencing DNA binding, actually increased binding of Dax1 to Sf1 to further enhance transcriptional repression of FAdE. Taken together, these studies define a crucial repressor function of Sf1 SUMOylation and Dax1 in the physiological cessation of FAdE-mediated Sf1 expression and the resultant regression of the postnatal fetal cortex (X-zone).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.