Abstract

We present timing jitter measurements of an InGaAs quantum well vertical external cavity surface emitting laser (VECSEL) passively mode locked with a quantum dot semiconductor saturable absorber mirror (SESAM) at 2-GHz repetition rate. It generates 53-mW average output power in 4.6-ps pulses at 953 nm. The laser housing was optimized for high mechanical stability to reduce acoustic noise. We use a fiber-coupled multimode 808-nm pump diode, which is mounted inside the laser housing. No active cavity length stabilization is employed. The phase noise of the free-running laser integrated over a bandwidth from 100 Hz to 1 MHz corresponds to an RMS timing jitter of ≈212 fs, which is lower than previously obtained for mode-locked VECSELs. This clearly confirms the superior noise performance expected from a high-Q-cavity semiconductor laser. In contrast to edge-emitting semiconductor diode lasers, the cavity mode is perpendicular to the quantum well gain layers, which minimizes complex dispersion and nonlinear dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call