Abstract

Using the dynamic optimization approach to the description of arm trajectories, the present paper examines trajectory planning principles underlying the generation of sequential arm movements in neurologically normal and Parkinsonian subjects. The paper discusses a possible scheme for sequence generation involving the superposition of temporally overlapping trajectory units. Evidence for the feasibility of this scheme is drawn from a recent study of arm tracking responses to double-step stimuli. The paper also discusses a possible criterion according to which basic strokes can be identified, and it examines to what extent the difficulties that Parkinson's disease patients have in generating motor sequences emerge from their inability to preplan a simple stroke or movement chunk as a single unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.