Abstract

Across taxa, offspring size traits are linked to survival and life-time fitness. Inclement weather can be a major constraint on offspring growth and parental care. Despite the adaptive benefits of larger offspring, we have a limited understanding of the effects of severe environmental conditions across developmental stages and how coping strategies differ among species. We assessed the influence of inclement weather on offspring size and mass traits within populations of three alpine breeding songbirds in British Columbia: 1) horned lark (Eremophila alpestris), 2) dark-eyed junco (Junco hyemalis), and 3) savannah sparrow (Passerculus sandwichensis). Specifically, we investigated at which stages during early-life development offspring are most vulnerable to inclement weather and whether thresholds exist in the developmental response to severe weather events. Across species, we identified two critical periods that best predicted offspring size: 1) clutch initiation, and 2) the nestling stage. Colder temperatures experienced by the female during clutch initiation were associated with larger, heavier offspring in horned larks but smaller offspring for savannah sparrows, indicating the potential for maternal effects, albeit acting through different mechanisms. Additionally, horned lark offspring were resilient to colder average temperatures during the nestling stage but were vulnerable to extreme cold events and multi-day storms. In contrast, dark-eyed junco nestlings were robust to storms, but smaller size and mass traits were associated with lower daily maximum temperatures (i.e., more mild temperature challenges). We suggest species differences may be linked to life-history traits, such as: 1) the thermoregulatory benefits of larger body mass in horned larks, 2) the benefits of greater nest cover to buffer dark-eyed junco against precipitation events, and 3) delayed clutch initiation for savannah sparrows to limit exposure to cold storms. We provide evidence for stage-specific impacts of inclement weather on offspring development with implications for reproductive success. These results advance our understanding of early-life resilience to stochastic environments, as we may be able to predict differences in the vulnerability of alpine species to increasingly variable and severe weather conditions.

Highlights

  • Inclement weather and temperature regimes can strongly influence size and mass development in homeothermic vertebrates (Gillooly et al, 2002; Nord and Giroud, 2020)

  • We suggest species differences may be linked to life-history traits, such as: (1) the thermoregulatory benefits of larger body mass in horned larks, (2) the benefits of greater nest cover to buffer dark-eyed junco against precipitation events, and (3) delayed clutch initiation for savannah sparrows to limit exposure to cold storms

  • We investigated the influence of inclement weather on offspring size trait variation within populations of three ground-nesting songbirds breeding in alpine habitats: (1) horned lark (Eremophila alpestris), (2) dark-eyed junco (Junco hyemalis), and (3) savannah sparrow (Passerculus sandwichensis)

Read more

Summary

Introduction

Inclement weather and temperature regimes can strongly influence size and mass development in homeothermic vertebrates (Gillooly et al, 2002; Nord and Giroud, 2020). Altricial songbird development occurs across several welldefined stages: ovum development (internal), egg incubation (external; warmth required), and the nestling stage (warmth and food required). While distinct, these stages are not compartmentalized, as conditions that affect development in one stage can influence subsequent stages (Monaghan, 2008; O’Connor et al, 2014). Inclement weather can stimulate adaptive coping mechanisms in both parents and offspring, reallocating limited resources and promoting or constraining development (Williams, 2012; Wingfield et al, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.