Abstract

Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22–30 years) flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N) orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS) and extensor digitorum (ED) in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N) with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260–370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly) responsible for the observed increase in force enslaving during index finger flexion.

Highlights

  • The hand has a complex, mechanically interacting, anatomical structure, most clearly illustrated by the extensor mechanism and the combination of extrinsic and intrinsic muscles [1,2,3]

  • We found that non-instructed finger forces increased during isotonic flexion of the instructed index finger, but with a substantial time delay

  • Considering that there were no significant changes in EMG activities of the non-instructed fingers, these results indicate that the increase in the EE during movement should most likely be attributed to the relative movement of the instructed index finger, most likely mediated by the effects of mechanical connections between muscle compartments and tendons

Read more

Summary

Introduction

The hand has a complex, mechanically interacting, anatomical structure, most clearly illustrated by the extensor mechanism and the combination of extrinsic and intrinsic muscles [1,2,3]. This anatomical complexity together with other factors, such as spatial overlap of neurons. Enslaving has been explained by mechanical and neural connections between muscle (compartments) controlling the fingers [8]. Enslaving may among others be explained by involuntary co-activation of multiple muscle heads and spatial overlap of motor cortex areas that are responsible for movement of the fingers [5, 8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call