Abstract

Middle Triassic magmatism in the Southern Alps (northern Italy) consists of widespread volcanoclastic deposits, basaltic lava flows and intrusive complexes. Despite their importance in understanding the geodynamic evolution of the westernmost Tethys, the timing of magmatic activity and the links between the different igneous products remain poorly understood. We present a comprehensive high-precision zircon U–Pb geochronology dataset for the major intrusive complexes and several volcanic ash layers and integrate this with a high-resolution stratigraphic framework of Middle Triassic volcano-sedimentary successions. The main interval of Middle Triassic magmatism lasted at least 5.07 ± 0.06 myr. Magmatic activity started with silicic eruptions between 242.653 ± 0.036 and 238.646 ± 0.037 Ma, followed by a Supplementary material: Isotope dilution thermal ionization mass spectrometry U–Pb and laser ablation inductively coupled plasma mass spectrometry trace element data tables, sample coordinates, supplementary geochemical data, cathodoluminescence images of isotope dilution thermal ionization mass spectrometry dated zircons and supplementary field documentation are available at https://doi.org/10.6084/m9.figshare.c.4287506

Highlights

  • Middle Triassic magmatism in the Southern Alps consists of widespread volcanoclastic deposits, basaltic lava flows and intrusive complexes

  • We present here a comprehensive high-precision zircon U–Pb geochronology dataset for 12 silicic volcanic ash beds and two intrusive complexes in the Southern Alps

  • We have presented a geochronological framework for Middle Triassic intrusive and volcanic products from the Southern Alps

Read more

Summary

Introduction

Middle Triassic magmatism in the Southern Alps (northern Italy) consists of widespread volcanoclastic deposits, basaltic lava flows and intrusive complexes. Despite their importance in understanding the geodynamic evolution of the westernmost Tethys, the timing of magmatic activity and the links between the different igneous products remain poorly understood. Magmatic activity started with silicic eruptions between 242.653 ± 0.036 and 238.646 ± 0.037 Ma, followed by a

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call