Abstract

The Twelve Mile Bay assemblage (TMBa) forms the high-strain interior of the Twelve Mile Bay shear zone (TMBsz), a major ductile decollement zone within the western Canadian Grenville orogen. Metasupracrustal gneiss within the TMBa preserves evidence for an early granulite facies (˜10–11 kbar and ˜840°C) metamorphism overprinted by amphibolite facies (˜5–7 kbar and ˜650°C) assemblages that define the high-strain shear zone fabric. U–Pb zircon ages for TMBa samples were determined by LA-ICP-MS. A low-strain amphibolite pod with partially preserved granulite facies assemblage and textures yielded an anchored discordia intercept of 1157 ± 11 Ma and 207Pb/206Pb weighted average of 1146 ± 10 Ma. Three higher strain samples with recrystallized amphibolite facies assemblages all yield younger ages, with 207Pb/206Pb weighted averages of 1125 ± 16, 1110 ± 8, and 1095 ± 17 Ma. Phase equilibrium modelling shows that up to 40 vol.% anatectic melt could have been produced in TMBa pelitic rocks during peak metamorphic conditions, and thus, much of the package likely would have been substantially weakened during the early stages of TMBsz development. Strain apparently continued to accumulate within the TMBa until ca. 1100 Ma, concurrent with pegmatite dike emplacement and hydration along the base of the overlying interior Parry Sound domain (iPSD), perpetuating TMBsz activity during cooling and exhumation to shallower crustal levels. Similarities between the TMBa and the upper parts of the basal PSD (bPSD), in terms of timing and conditions of metamorphism and shearing, as well as structural position relative to the overlying iPSD allochthon, indicate that these units are likely correlative. The composite bPSD–TMBa system appears to have contemporaneously localized strain within the middle orogenic crust during early to middle stages of Grenvillian collision, providing a petrologically constrained mechanism for the long distance transport of mid-crustal nappes predicted in thermal-mechanical models of continental collision for this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call