Abstract

There has been considerable controversy in concurrency theory between theinterleaving' andtrue concurrency' schools. The former school advocates associating a transition system with a process which captures concurrent execution via the interleaving of occurrences; the latter adopts more complex semantic structures to avoid reducing concurrency to interleaving. In this paper we show that the two approaches are not irreconcilable. We define a timed process algebra where occurrences are associated with intervals of time, and give it a transition system semantics. This semantics has many of the advant- ages of the interleaving approach; the algebra admits an expansion theorem, and bisimulation semantics can be used as usual. Our transition systems, however, incorporate timing information, and this enables us to express concurrency: merely adding timing appropriately generalises transition systems to asynchronous transition systems, showing that time gives a link between true concurrency and interleaving. Moreover, we can provide a complete axiomatisation of bisimulation for our algebra; a result that is often problematic in a timed setting. Another advantage of incorporating timing information into the calculus is that it allows a particularly simple definition of action refinement; this we present. The paper concludes with a comparison of the equivalence we present with those in the literature, and an example system specification in our formalism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call