Abstract

In this article, a time-varying two-phase optimization neural network is proposed for the constrained time-varying optimization problem, which takes advantage of both the two-phase neural network and the time-varying programming neural network. Considering the training of a neural network as a time-varying optimization problem, the proposed algorithm is applied to the multilayer neural network training for the system identification or function learning and the model reference neurocontrol. Moreover, the neural network training with the constrained weights is also considered. The effectiveness of the proposed scheme is demonstrated by computer simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.