Abstract

BackgroundWhile many species have suffered from the detrimental impacts of increasing human population growth, some species, such as cougars (Puma concolor), have been observed using human-modified landscapes. However, human-modified habitat can be a source of both increased risk and increased food availability, particularly for large carnivores. Assessing preferential use of the landscape is important for managing wildlife and can be particularly useful in transitional habitats, such as at the wildland-urban interface. Preferential use is often evaluated using resource selection functions (RSFs), which are focused on quantifying habitat preference using either a temporally static framework or researcher-defined temporal delineations. Many applications of RSFs do not incorporate time-varying landscape availability or temporally-varying behavior, which may mask conflict and avoidance behavior.MethodsContemporary approaches to incorporate landscape availability into the assessment of habitat selection include spatio-temporal point process models, step selection functions, and continuous-time Markov chain (CTMC) models; in contrast with the other methods, the CTMC model allows for explicit inference on animal movement in continuous-time. We used a hierarchical version of the CTMC framework to model speed and directionality of fine-scale movement by a population of cougars inhabiting the Front Range of Colorado, U.S.A., an area exhibiting rapid population growth and increased recreational use, as a function of individual variation and time-varying responses to landscape covariates.ResultsWe found evidence for individual- and daily temporal-variability in cougar response to landscape characteristics. Distance to nearest kill site emerged as the most important driver of movement at a population-level. We also detected seasonal differences in average response to elevation, heat loading, and distance to roads. Motility was also a function of amount of development, with cougars moving faster in developed areas than in undeveloped areas.ConclusionsThe time-varying framework allowed us to detect temporal variability that would be masked in a generalized linear model, and improved the within-sample predictive ability of the model. The high degree of individual variation suggests that, if agencies want to minimize human-wildlife conflict management options should be varied and flexible. However, due to the effect of recursive behavior on cougar movement, likely related to the location and timing of potential kill-sites, kill-site identification tools may be useful for identifying areas of potential conflict.

Highlights

  • While many species have suffered from the detrimental impacts of increasing human population growth, some species, such as cougars (Puma concolor), have been observed using human-modified landscapes

  • The time periods of interest were chosen for two reasons: first, because observations were available for a large number of individuals, which is critical for making population-level inference across individuals, and second, because we were interested in examining seasonal differences in cougar movement due to temporal variability in the landscape-level covariates

  • Because cougars and humans are active at different times throughout the day, we proposed an additional model, a hierarchical generalized additive model (H-GAM), to account for individual- and population-level diel time-varying behavior

Read more

Summary

Introduction

While many species have suffered from the detrimental impacts of increasing human population growth, some species, such as cougars (Puma concolor), have been observed using human-modified landscapes. Preferential use is often evaluated using resource selection functions (RSFs), which are focused on quantifying habitat preference using either a temporally static framework or researcher-defined temporal delineations. Movement decisions are a function of a number of variables, including the current location of the individual and the alternative available landscape [1]. A central theme of animal ecology is the assessment of an individual’s selection for habitat, given what is available [2]. Habitat selection is typically characterized using resource selection functions (RSF), which are often fit using logistic regression to compare the locations used by an individual or population to a random sample taken across some area defined as “available” [3]. Use that is disproportionate to habitat availability implies that the individual selects for, or avoids, the given habitat [3]. An animal may use a resource disproportionately less than is available in its home range, it may have chosen its home range because the resource was abundant [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call