Abstract

As sustainable structures like steel structures become more widely used, so do their construction issues. Improper lifting measures of long-span spatial steel structures may delay the construction period and even cause safety accidents. These problems have hindered the realization of sustainable buildings. Few studies on long-span spatial steel structures considered time-varying mechanical characteristics during the construction process. During the construction process, it will be found that the installed structure does not meet the required accuracy, and the installed content needs to be removed and re-constructed. This will cause idle work and rework, which will result in a waste of resources and is not conducive to sustainable development. Therefore, it is necessary to study the lifting construction process of long-span spatial steel structures and form a refined construction method. Based on the lifting construction process of the maintenance hangar roof of Chengdu Tianfu International Airport, this study proposes a time-varying mechanical analysis method for synchronous and asynchronous integral lifting of long-span space steel structures basing the Building Information Model (BIM). The force on the lifting point is analyzed during the hoisting construction process when the single-point asynchronous integral lifting and the interlaced point asynchronous integral lifting are carried out. The adverse effect of the displacement difference between lifting points during asynchronous integral lifting is proved. It provides a reference for the safe construction of long-span spatial steel structure lifting and also helps to improve the sustainability of construction projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call