Abstract
Multilevel and latent growth modeling analysis (GMA) is often used to compare independent groups in linear random slopes of outcomes over time, particularly in randomized controlled trials. The unstandardized coefficient for the effect of group on the slope from a linear GMA can be transformed into a model-estimated effect size for the group difference at the end of a study. Because effect sizes vary nonlinearly in quadratic GMA, the effect size at the end of a study using quadratic GMA cannot be derived from a single coefficient, and cannot be used to estimate effect sizes at intermediate time points with backward extrapolation. This article formulates equations and associated input commands in Mplus for time-varying effect sizes for quadratic GMA. Illustrative analyses that produced these time-varying effect sizes were presented, and a Monte Carlo study found that bias in the effect sizes and their confidence intervals was ignorable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.