Abstract

Hierarchically nano-structured ZnO microspheres have been synthesized solvothermally at variable reaction times (6, 12, 36, and 48 h) by using ethylene glycol as a solvent, zinc acetate as precursor, and hexamethylene triamine (HMT) as structure directing agent. The study also focused on the mechanism of time-dependant growth of hierarchical ZnO microspheres and their deployment in dye-sensitized solar cells (DSSCs) as photoanode. Longer reaction times lead to formation of nearly spherical ZnO microspheres. The structural and morphological analysis reveals the formation of a wurtzite hexagonal crystalline structure having a microsphere-like morphology. ZnO hierarchical microspheres synthesized at different reaction times have been used as photoanode in DSSCs which show enhanced light-harvesting properties than the commercial ZnO powders. ZnO microspheres synthesized at 48 h show maximum current density and cell efficiency of 8.51 mA/cm2 and 3.31%, respectively. This enhancement in photovoltaic parameters could be due to highly porous microspheres which provide more specific surface area for dye loading, retardation of recombination, and better charge transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call