Abstract

The Earth’s time-variable gravity field is of great significance to study mass change within the Earth’s system. Since 2002, the NASA-DLR Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE follow-on mission provide observations of monthly changes in the Earth gravity field with unprecedented accuracy and resolution by employing low-low satellite-to-satellite tracking (LLSST) measurements. In addition to LLSST, monthly gravity field models can be acquired from satellite laser ranging (SLR) and high-low satellite-to-satellite tracking (HLSST). The monthly gravity field solutions HLSST+SLR were derived by combining HLSST observations of low earth orbiting (LEO) satellites with SLR observations of geodetic satellites. Bandpass filtering was applied to the harmonic coefficients of HLSST+SLR solutions to reduce noise. In this study, we analyzed the performance of the monthly HLSST+SLR solutions in the spectral and spatial domains. The results show that: (1) the accuracies of HLSST+SLR solutions are comparable to those from GRACE for coefficients below degree 10, and significantly improved compared to those of SLR-only and HLSST-only solutions; (2) the effective spatial resolution could reach 1000 km, corresponding to the spherical harmonic coefficient degree 20, which is higher than that of the HLSST-only solutions. Compared with the GRACE solutions, the global mass redistribution features and magnitudes can be well identified from HLSST+SLR solutions at the spatial resolution of 1000 km, although with much noise. In the applications of regional mass recovery, the seasonal variations over the Amazon Basin and the long-term trend over Greenland derived from HLSST+SLR solutions truncated to degree 20 agree well with those from GRACE solutions without truncation, and the RMS of mass variations is 282 Gt over the Amazon Basin and 192 Gt in Greenland. We conclude that HLSST+SLR can be an alternative option to estimate temporal changes in the Earth gravity field, although with far less spatial resolution and lower accuracy than that offered by GRACE. This approach can monitor the large-scale mass transport during the data gaps between the GRACE and the GRACE follow-on missions.

Highlights

  • The time-variable Earth gravity field provides information about mass redistributions within the Earth system, which allows studying temporal changes in terrestrial water storage associated with changes in terrestrial hydrology and the mass balance of glaciers, sea level rise, and solid Earth movements, e.g., glacial isostatic adjustment (GIA) and earthquakes [1]

  • We investigated the performance of the high-low satellite-to-satellite tracking (HLSST)+satellite laser ranging (SLR) solutions compared with the Gravity Recovery and Climate Experiment (GRACE) low-low satellite-to-satellite tracking (LLSST) solutions and the improvement relative to solutions based on SLR-only and HLSST-only data

  • The goal of this paper is to evaluate the accuracy and spatial resolution of the monthly solutions HLSST+SLR and investigate the capability of mass transport recovery at that spatial resolution compared with the GRACE LLSST solutions

Read more

Summary

Introduction

The Gravity Recovery and Climate Experiment (GRACE) mission [2,3], launched on March 17, 2002, and its successor, the GRACE. Follow-on mission [4], launched on May 22, 2018, determine the monthly global gravity models with a spatial resolution of about 300 km with an accuracy of 2 cm [5] from precise. K-band ranging between two satellites separated by 220 km along their orbit track, i.e., Remote Sens. GRACE LLSST gravity field solutions, e.g., the official GRACE Level-2 products in the form of spherical harmonic coefficients, are provided by three GRACE data processing centers: the Center for. Data products and documents are available from either GFZ’s Information System and Data Center (ISDC) [6] or JPL’s

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call