Abstract

Late-onset toxicity is common for novel molecularly targeted agents and immunotherapy. It causes major logistic difficulty for existing adaptive phase I trial designs, which require the observance of toxicity early enough to apply dose-escalation rules for new patients. The same logistic difficulty arises when the accrual is rapid. We propose the time-to-event Bayesian optimal interval (TITE-BOIN) design to accelerate phase I trials by allowing for real-time dose assignment decisions for new patients while some enrolled patients' toxicity data are still pending. Similar to the rolling six design, the TITE-BOIN dose-escalation/deescalation rule can be tabulated before the trial begins, making it transparent and simple to implement, but is more flexible in choosing the target dose-limiting toxicity (DLT) rate and has higher accuracy to identify the MTD. Compared with the more complicated model-based time-to-event continuous reassessment method (TITE-CRM), the TITE-BOIN has comparable accuracy to identify the MTD but is simpler to implement with substantially better overdose control. As the TITE-CRM is more aggressive in dose escalation, it is less likely to underdose patients. When there are no pending data, the TITE-BOIN seamlessly reduces to the BOIN design. Numerical studies show that the TITE-BOIN design supports continuous accrual without sacrificing patient safety or the accuracy of identifying the MTD, and therefore has great potential to accelerate early-phase drug development. Clin Cancer Res; 24(20); 4921-30. ©2018 AACR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.