Abstract

AbstractEfficient and affordable synthesis of Li+ functional ceramics is crucial for the scalable production of solid electrolytes for batteries. Li‐garnet Li7La3Zr2O12−d (LLZO), especially its cubic phase (cLLZO), attracts attention due to its high Li+ conductivity and wide electrochemical stability window. However, high sintering temperatures raise concerns about the cathode interface stability, production costs, and energy consumption for scalable manufacture. We show an alternative “sinter‐free” route to stabilize cLLZO as films at half of its sinter temperature. Specifically, we establish a time‐temperature‐transformation (TTT) diagram which captures the amorphous‐to‐crystalline LLZO transformation based on crystallization enthalpy analysis and confirm stabilization of thin‐film cLLZO at record low temperatures of 500 °C. Our findings pave the way for low‐temperature processing via TTT diagrams, which can be used for battery cell design targeting reduced carbon footprints in manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.