Abstract

Recent studies have established that the circadian clock influences onset, progression and therapeutic outcomes in a number of diseases including cancer and heart diseases. Therefore, there is a need for tools to measure the functional state of the molecular circadian clock and its downstream targets in patients. Moreover, the clock is a multi-dimensional stochastic oscillator and there are few tools for analysing it as a noisy multigene dynamical system. In this paper we consider the methodology behind TimeTeller, a machine learning tool that analyses the clock as a noisy multigene dynamical system and aims to estimate circadian clock function from a single transcriptome by modelling the multi-dimensional state of the clock. We demonstrate its potential for clock systems assessment by applying it to mouse, baboon and human microarray and RNA-seq data and show how to visualise and quantify the global structure of the clock, quantitatively stratify individual transcriptomic samples by clock dysfunction and globally compare clocks across individuals, conditions and tissues thus highlighting its potential relevance for advancing circadian medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.