Abstract

Unanticipated events inevitably occur in daily urban rail transit operations, disturbing the scheduled timetable. Despite the mild delay, the busy operation system probably tends to worsen a larger disturbance and even lead to a knock-on disruption if no rescheduling is timely carried out. We propose a bi-objective mixed-integer linear programming model (MILP) that employs the skip-stop operation strategy to eliminate unscheduled delays. This model addresses two distinct, yet interconnected objectives. Firstly, it aims to minimize the difference between the plan and the actual operation. Secondly, it strives to minimize the number of left-behind passengers. In order to resolve this MILP problem, we devised a Pareto-based genetic algorithm (GA). Based on the case study, we certify the superior effectiveness with comparisons to the whale optimization algorithm and the epsilon constraint method. The outcomes affirm that our model has the potential to reduce the total delay time of the line by 44.52% at most compared with the traditional all-stop running adjustment model. The optimal scheme saved 6.08% of the total costs based on a trade-off between operators’ interests and passenger satisfaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call