Abstract

In this paper, we study the time-fractional Euler–Poisson–Darboux equation with the Bessel fractional derivative. The Laplacian operator of this equation is considered in the ordinary and fractional derivatives and also in different coordinates. For the multi-dimensional Euler–Poisson–Darboux equation in the infinite domain (the whole space), we use the joint modified Meijer–Fourier transforms and establish a complex inversion formula for deriving the fundamental solution. The fractional moment of this solution is also presented in different dimensions. For studying the time-fractional Euler–Poisson–Darboux equation by the numerical methods in finite domain, we sketch the semi- and fully-discrete methods along with the matrix transfer technique to analyze the equation with fractional Laplacian operators in the cartesian, polar and spherical coordinates. The associated error and convergence theorems are also discussed. The illustrative examples are finally presented to verify our results in different coordinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.