Abstract
We study the Cauchy problem and the initial boundary value problem (IBVP) for nonlinear parabolic equations in $\mathcal{C}_b([0,T);L^p)$ and $L^q(0,T;L^p)$. We give a unified method to construct local mild solutions of the Cauchy problem or IBVP for a class of nonlinear parabolic equations in $\mathcal{C}_b([0,T);L^p)$ or $L^q(0,T;L^p)$ by introducing admissible triplet, generalized admissible triplet and establishing time space estimates for the solutions to the linear parabolic equations. Moreover, using our method, we also obtain the existence of global small solutions to the nonlinear parabolic equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.