Abstract

Finite-difference (FD) methods for the wave equation are flexible, robust and easy to implement. However, they in general suffer from numerical dispersion. FD methods based on accuracy give good dispersion at low frequencies, but waves tend to disperse for higher wavenumbers. Moreover, waves in higher dimensions also suffer from dispersion errors in all propagation angles. In this work, we give a unified methodology to derive dispersion reduction FD schemes for the two dimensional acoustic wave equation. This new methodology would generate schemes that give the theoretical minimum dispersion error in the uniform norm. Stability criteria are discussed for the general scheme. We also motivate the equivalence of popular dispersion reduction methodology and theoretical numerical reduction methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.