Abstract

A method based on singular value decomposition (SVD) is proposed for extracting features from motion time-series data observed with various sensing systems. Matrices consisting of the sliding window (SW) subsets of time-series data are decomposed, yielding singular vectors as the patterns of the motion, and the singular values as a scalar, by which the corresponding singular vectors describe the matrices.The sliding window based singular value decomposition was applied to analyze acceleration during walking. Three levels of walking difficulty were simulated by restricting the right knee joint in the measurement. The accelerations of the middles of the shanks and the back of the waist were measured and normalized before the SW-SVD was performed.The results showed that the first singular values inferred from the acceleration data of the restricted side (the right shank) significantly related to the increase of the restriction among all the subjects while there were no common trends in the singular values of the left shank and the waist. The SW-SVD was suggested to be a reliable method to evaluate walking disability. Furthermore, a 2D visualization tool is proposed to provide intuitive information about walking difficulty which can be used in walking rehabilitation to monitor recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.