Abstract
Turbulent neutral hydrogen (HI) line widths are often thought to be driven primarily by star formation (SF), but the timescale for converting SF energy to HI kinetic energy is unclear. As a complication, studies on the connection between Hi line widths and SF in external galaxies often use broadband tracers for the SF rate, which must implicitly assume that SF histories (SFHs) have been constant over the timescale of the tracer. In this paper, we compare measures of HI energy to time-resolved SFHs in a number of nearby dwarf galaxies. We find that HI energy surface density is strongly correlated only with SF that occurred 30-40 Myr ago. This timescale corresponds to the approximate lifetime of the lowest mass supernova progenitors (~ 8 Msun). This analysis suggests that the coupling between SF and the neutral ISM is strongest on this timescale, due either to an intrinsic delay between the release of the peak energy from SF or to the coherent effects of many SNe during this interval. At \Sigma_SFR > 10^-3 Msun yr^-1 kpc^-2, we find a mean coupling efficiency between SF energy and HI energy of \epsilon = 0.11 +/- 0.04 using the 30-40 Myr timescale. However, unphysical efficiencies are required in lower \Sigma_SFR systems, implying that SF is not the primary driver of HI kinematics at \Sigma_SFR < 10^-3 Msun yr^-1 kpc^-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.