Abstract

Kozai-Lidov (KL) oscillations in hierarchical triple systems have found application to many astrophysical contexts, including planet formation, type Ia supernovae, and supermassive black hole dynamics. The period of these oscillations is known at the order-of-magnitude level, but dependencies on the initial mutual inclination or inner eccentricity are not typically included. In this work I calculate the period of KL oscillations (tKL) exactly in the test particle limit at quadrupole order (TPQ). I explore the parameter space of all hierarchical triples at TPQ and show that except for triples on the boundary between libration and rotation, the period of KL oscillations does not vary by more than a factor of a few. The exact period may be approximated to better than 2 per cent for triples with mutual inclinations between 60 ◦ and 120 ◦ and initial eccentricities less than �0.3. In addition, I derive an analytic expression for the period of octupole-order oscillations due to the ‘eccentric KL mechanism’ (EKM). I show that the timescale for EKM oscillations is proportional to ǫ −1/2 oct , where ǫoct measures the strength of octupole perturbations relative to quadrupole perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.