Abstract

The objective of this paper is to introduce an innovative approach for the recovery of non-stationary signal components with possibly crossover instantaneous frequency (IF) curves from a multi-component blind-source signal. The main idea is to incorporate a chirp rate parameter with the time-scale continuous wavelet-like transformation, by considering the quadratic phase representation of the signal components. Hence-forth, even if two IF curves cross, the two corresponding signal components can still be separated and recovered, provided that their chirp rates are different. In other words, signal components with the same IF value at any time instant could still be recovered. To facilitate our presentation, we introduce the notion of time-scale-chirp_rate (TSC_R) recovery transform or TSC_R recovery operator to develop a TSC_R theory for the 3-dimensional space of time, scale, chirp rate. Our theoretical development is based on the approximation of the non-stationary signal components with linear chirps and applying the proposed adaptive TSC_R transform to the multi-component blind-source signal to obtain fairly accurate error bounds of IF estimations and signal components recovery. Several numerical experimental results are presented to demonstrate the out-performance of the proposed method over all existing time-frequency and time-scale approaches in the published literature, particularly for non-stationary source signals with crossover IFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.