Abstract
Time-reversal symmetry (T-symmetry) in a reversible cellular automaton (CA) is the property in which forward and backward evolutions of configurations are governed by the same local transition function. We show that the framework of partitioned cellular automata (PCAs) is useful to study T-symmetries of reversible CAs. Here, we investigate reversible elementary square PCAs (ESPCAs) and reversible elementary triangular PCAs (ETPCAs), and prove that a large number of reversible ESPCAs and all reversible ETPCAs are T-symmetric under some kinds of simple transformations on configurations. As applications, these results are used to find and analyse backward evolution processes in reversible PCAs. For example, for a given functional module implemented in a reversible PCA, such as a reversible logic element, we can obtain its inverse functional module very easily using its T-symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Parallel, Emergent and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.