Abstract

Broadband wireless communication users for 5G networks are primarily implemented in a complicated environment; the complex environment of time-varying multi-path propagation characteristics will seriously affect the performance of communication. One of the core technologies to overcome this problem is to introduce the environment adaptive technique--time reversal in the wireless link. Further, the problem of a Wiretap Channel in physical layer security research has become a popular research topic in recent years. To resolve the physical layer wiretap channel and multi-path fading problems in wireless channels, a novel concept of combining time reversal technology with physical layer security technology is proposed. In this paper, a physical layer secure transmission scheme based on the joint time reversal technique and artificial noise at the sending end is proposed for the wireless multi-path channel. First, in a typical wiretap channel model, the time reversal technique is used to improve the security of the information transmission process by using the properties of spatial and temporal focusing. Second, as the information is easily eavesdropped near the focus point, artificial noise is added to the sending end to disrupt the eavesdropping capability of the eavesdropper. Finally, due to the complexity of the multi-path channels, the influence of the antenna correlation on the system security performance is considered. Compared with the existing physical layer security schemes, theoretical analysis and simulation results show that the proposed scheme has a higher secrecy signal-to-noise ratio, a higher rate of secrecy, and a lower bit error rate of legitimate user.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.