Abstract

We study a class of anomalies associated with time-reversal and spatial reflection symmetry in (2+1)D topological phases of matter. In these systems, the topological quantum numbers of the quasiparticles, such as the fusion rules and braiding statistics, possess a $\mathbb{Z}_2$ symmetry which can be associated with either time-reversal (denoted $\mathbb{Z}_2^{\bf T})$ or spatial reflections. Under this symmetry, correlation functions of all Wilson loop operators in the low energy topological quantum field theory (TQFT) are invariant. However, the theories that we study possess a severe anomaly associated with the failure to consistently localize the symmetry action to the quasiparticles, precluding even defining a notion of symmetry fractionalization. We present simple sufficient conditions which determine when $\mathbb{Z}_2^{\bf T}$ symmetry localization anomalies exist. We present an infinite series of TQFTs with such anomalies, some examples of which include USp$(4)_2$ and SO$(4)_4$ Chern-Simons (CS) theory. The theories that we find with these $\mathbb{Z}_2^{\bf T}$ anomalies can be obtained by gauging the unitary $\mathbb{Z}_2$ subgroup of a different TQFT with a $\mathbb{Z}_4^{\bf T}$ symmetry. We show that the anomaly can be resolved in several ways: (1) the true symmetry of the theory is $\mathbb{Z}_4^{\bf T}$, or (2) the theory can be considered to be a theory of fermions, with ${\bf T}^2 = (-1)^{N_f}$ corresponding to fermion parity. Finally, we demonstrate that theories with the $\mathbb{Z}_2^{\bf T}$ localization anomaly can be compatible with $\mathbb{Z}_2^{\bf T}$ if they are "pseudo-realized" at the surface of a (3+1)D symmetry-enriched topological phase. The "pseudo-realization" refers to the fact that the bulk (3+1)D system is described by a dynamical $\mathbb{Z}_2$ gauge theory and thus only a subset of the quasiparticles are confined to the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call