Abstract

Electron-core interactions play a key role in strong-field ionization and the formation of photoelectron spectra. We analyse the temporal dynamics of strong field ionization associated with these interactions using the time-dependent analytical R-matrix (ARM) method, developed in our previous work [J. Kaushal and O. Smirnova, Phys. Rev. A 88, 013421 (2013)]. The approach is fully quantum but includes the concept of trajectories. However, the trajectories are not classical in the sense that they have both real and imaginary components all the way to the detector. We show that the imaginary parts of these trajectories, which are usually ignored, have a clear physical meaning and are crucial for the correct description of electron-core interactions after ionization. In particular, they give rise to electron deceleration, as well as dynamics associated with electron recapture and release. Our approach is analytical and time-dependent, and allows one to gain access to the electron energy distribution and ionization yield as a function of time. Thus we can also rigorously answer the question: when is ionization completed?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.