Abstract

The six research topics presented in the following chapters are concerned with several diverse problems of molecular reaction dynamics in isolated gas-phase environments. The scope of the studies ranges from performing direct measurements of bond-breakage on electronically dissociative potential energy surfaces, to monitoring the time-course of a restricted geometry bimolecular reaction. The common experimental method used in all of the studies has been a variant of pump-probe time-resolved spectroscopy. The underlying theme of the endeavors has been threefold: 1) To gain a better understanding of the role of intramolecular dynamics that precede or are commensurate with the reaction dynamics; 2) To begin to appreciatiate the observable manifestations of specific features of the reactive potential energy surface; and 3) To utilize the specific temporal behavior to elucidate quantitative information for the said potential surface. The studies of molecular dissociation on repulsive electronic surfaces has lead to a quantification of the timescale for primary steps in reaction processes. Moreover, transform limited temporal/spectral studies have begun to focus on specific long-range reaction fragment interactions in a state-specific manner. The latter endeavor has identified a mechanism for the reaction-fragment(s) interaction in the near-asymptotic product region. Predissociative reaction and intramolecular dynamical behavior has been studied on ground potential energy surfaces. Overtone excitation of the OH-stretch mode of hydrogen peroxide enables molecular ground state excitation and state-specific detection of the OH reaction product. These investigations point out the potential of this picosecond pump-probe method for directly elucidating the intramolecular energy redistribution process and the possibility for direct investigation of the long-range tail region of the free-radical recombination potential surface. The investigation of a spatially oriented bimolecular reaction has conclusively shown that the IH-OCO reaction proceeds by way of the [HOCO] reaction complex species. The close proximity of the van der Waals bound reactants produces unique multi-body interactions not found in the gas phase but which may arise in condensed phases. Moreover, these investigations have obtained evidence for a unique reaction reasonance (which is analogous to a shape-resonance) feature. The presence of such a resonance in the reaction entrance channel region affects the temporal behavior and yield of product formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call