Abstract

In this paper, we report the systematic investigation on the melt characteristics of silicon during laser thermal processing (LTP) of amorphous silicon (a-Si) gates on ultrathin gate oxides. LTP is used to reduce the gate depletion effect in advanced semiconductor devices. The influence of implantation-induced damage and chemical inhomogeneities on the melt behavior of ion-implanted a-Si is studied using in situ time-resolved reflectance (TRR) measurements and ex situ secondary ion mass spectrometry. The results from TRR measurements indicate the presence of a buried melt for a-Si implanted with B+ at a subamorphizing dose. In contrast, such a melt behavior is not observed during LTP of undoped a-Si and a-Si implanted with As+ at an amorphizing dose. We attribute the marked difference in the melt characteristics to the competitive effects between compositional inhomogeneities and the extent of amorphization in the a-Si layer. It should be noted that the as-deposited a-Si gate is not really “amorphous” in the sense of an ion beam-induced amorphous layer. This postulation is verified by the absence of a buried melt in a-Si films implanted with Si+ prior to B+ implantation, where the dose of the Si+ implant is sufficient to cause amorphization in silicon and the amorphization depth greatly exceeds the projected range of the boron implant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.