Abstract

AbstractTime-resolved photoluminescence spectroscopy has been used to investigate carrier decay dynamics in InxGa1−xAs1−yNy (x ∼ 0.03, y ∼ 0.01) epilayers grown on GaAs by metalorganic chemical vapor deposition. Time-resolved PL measurements, performed for various excitation intensities and sample temperatures, indicate that the broad PL emission at low temperature is dominated by localized exciton recombination. Lifetimes in the range of 0.07–0.34 ns are measured; these photoluminescence lifetimes are significantly shorter than corresponding values obtained for GaAs. In particular, we observe an emission energy dependence of the decay lifetime at 10 K, whereby the lifetime decreases with increasing emission energy across the PL spectrum. This behavior is characteristic of a distribution of localized states, which arises from alloy fluctuations. We have also studied the effects of post-growth rapid thermal annealing (RTA) on the integrated photoluminescence emission intensity, which indicate that the optimal annealing conditions is 690 °C when annealed for 120 seconds in a nitrogen ambient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.